Part (1)

Define sequence $\left\langle p_{n}\right\rangle$ as

$$
\begin{equation*}
p_{1}=3, \quad p_{n+1}=\frac{1}{3} p_{n}+1 \quad(n=1,2,3, \ldots) \tag{1}
\end{equation*}
$$

We wish to find a general term for $\left\langle p_{n}\right\rangle$, and the sum of its first n elements. First, from (1) we have that

$$
p_{n+1}-\frac{\frac{\mathrm{A}}{\overline{\mathrm{~B}}}}{\frac{\mathrm{~B}}{2}} \frac{1}{3}\left(p_{n}-\frac{\mathrm{A}}{\overline{\mathrm{~B}}}\right) \quad(n=1,2,3, \ldots)
$$

so a general term for $\left\langle p_{n}\right\rangle$ is

$$
p_{n}=\frac{1}{\mathrm{C} \cdot \mathrm{D}^{n-2}}+\frac{\mathrm{E}}{\overline{\mathrm{~F}}}
$$

Therefore, for a natural number n,

$$
\sum_{k=1}^{n} p_{k}=\frac{\boxed{\mathrm{G}}}{\overline{\mathrm{H}}}\left(1-\frac{1}{\mathrm{I}^{n}}\right)+\frac{\square \mathrm{J} n}{\overline{\mathrm{~K}}}
$$

Part (2)

Let $a_{1}=3, a_{2}=3, a_{3}=3$ be the first three terms in a sequence of positive numbers $\left\langle a_{n}\right\rangle$ such that for all natural numbers n

$$
\begin{equation*}
a_{n+3}=\frac{a_{n}+a_{n+1}}{a_{n+2}} \tag{2}
\end{equation*}
$$

Furthermore, define sequences $\left\langle b_{n}\right\rangle,\left\langle c_{n}\right\rangle$ such that for all natural numbers $n, b_{n}=a_{2 n-1}, c_{n}=a_{2 n}$. We wish to find general terms for sequences $\left\langle b_{n}\right\rangle,\left\langle c_{n}\right\rangle$.
First, from (2) we have that

$$
a_{4}=\frac{a_{1}+a_{2}}{a_{3}}=\square \mathrm{L}, a_{5}=3, a_{6}=\frac{\mathrm{M}}{\overline{\mathrm{~N}}}, a_{7}=3
$$

From this we obtain $b_{1}=b_{2}=b_{3}=b_{4}=3$, so one might conjecture that

$$
\begin{equation*}
b_{n}=3 \quad(n=1,2,3, \ldots) \tag{3}
\end{equation*}
$$

To demonstrate (3), it is sufficient to show that since $b_{1}=3$, for all natural numbers n

$$
\begin{equation*}
b_{n+1}=b_{n} \tag{4}
\end{equation*}
$$

We can prove this by showing that (4) holds when $n=1$, then showing that if (4) holds when $n=k$, then (4) must also hold when $n=k+1$. Doing a mathematical proof in this manner is called proof by O .

What is the most appropriate phrase to insert into O ?

1. synthetic division 2 . circular measure
2. mathematical induction 4. contradiction
(I) When $n=1$, we have $b_{1}=3, b_{2}=3$, and so (4) holds.
(II) Suppose that (4) holds when $n=k$. In other words, suppose that

$$
b_{k+1}=b_{k} . \quad \ldots \ldots \ldots \ldots \text { (5) }
$$

Then when $n=k+1$, we can substitute the n in (2) with $2 k$ and with $2 k-1$ to obtain

$$
b_{k+2}=\frac{c_{k}+\overline{\mathrm{P}}_{k+1}}{\mathrm{Q}_{k+1}}, \quad c_{k+1}=\frac{\mathrm{R}}{k}+c_{k} .
$$

Therefore, b_{k+2} can be expressed as

$$
b_{k+2}=\frac{\left(\boxed{\mathrm{T}}_{k}+\overline{\mathrm{U}}_{k+1}\right) \mathrm{V}_{k+1}}{b_{k}+c_{k}} .
$$

From (5) it thus follows that $b_{k+2}=b_{k+1}$, and so (4) also holds for $n=k+1$.

From (I), (II) above, we have shown that (4) holds for all natural numbers n. Therefore (3) holds, and the general term for sequence $\left\langle b_{n}\right\rangle$ is $b_{n}=3$.

Next, from (3) and from substituting the n in (2) with $2 n-1$, we obtain

$$
c_{n+1}=\frac{1}{3} c_{n}+1 \quad(n=1,2,3, \ldots)
$$

Since $c_{1}=\mathrm{W}$ and from (1), we can see that the general term for the sequence $\left\langle c_{n}\right\rangle$ is equivalent to the general term for sequence $\left\langle p_{n}\right\rangle$ derived in part 1 of this problem.

